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Pupil apodization for increasing data storage density
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We introduce a technique for increasing density in optical data storage systems. This technique is based
on the use of a superresolving filter at the pupil of a confocal readout system. The main characteristic of
this confocal readout system is that the light beam traverses twice through the pupil filter. We describe
how to analyze the system performance for general filters, but we focus the study on filters with no focus
displacement. Although the storage density attainable depends on the filter characteristics, we show that
the storage density can be easily duplicated.
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Data storage is an increasing market, because there
are more and more applications that require electronic
archives, due to their better accessibility and lower costs.
Two decades ago, it seemed as if optical devices were to
beat the rest of storage technologies, but magnetic and
semiconductor devices have evolved more quickly than
optical ones and, consequently, optical storage systems
do not dominate the market but complement the other
technologies. The most relevant characteristics of storage
devices are the cost, transfer rate, data density, and dura-
bility. Of course, it depends on each application which
of these characteristics is more relevant and, accordingly,
which storage technology is preferred. At the moment,
optical systems cannot compete in terms of data density
or transfer rate, but their low cost and easy reproducibil-
ity make them useful for information distribution and
archiving applications in the domain of personal com-
puters. In this situation, optical storage systems must
improve their performance in order to succeed further in
this growing market. In this letter, a confocal set up for
improving data storage density in optical devices is de-
scribed and analyzed. It is based on the modification of
the pupil function of the system by using of a superreso-
lution mask[1].

The design of pupil masks for point spread function
(PSF) engineering has been approached from different
points of view in several applications, such as confocal
microscopy, astronomy, lithography, free space commu-
nications, and even in optical data storage[2−5]. Radial-
symmetric filters have been usually preferred for ease
of their fabrication and analysis. The first designs are
based on amplitude masks, but hybrid[6] and phase-only
masks[1] are now more generally studied and, especially,
binary phase-only annular profiles stand out for their sim-
plicity and good performance[7−9]. The design of these
masks basically consists in the definition of some fig-
ures of merit that describe the desired focal light dis-
tribution, and the calculation of the filter parameters
from these figures of merit. For optical data storage, the
first designs searched for transverse superresolution and
a larger focal depth[2], but recent devices require several
layers and, thus, three-dimensional (3D) superresolution

is preferred[10−13]. For this reason, the combination of a
confocal system and a transverse superresolving filter is
an optimum choice for attaining the best performance
from optical devices[3].

The proposed scanning scheme is shown in Fig. 1. The
light from the source is focused sequentially at each point
of the optical disc by a lens, whose pupil is modified by
the superresolution filter. The reflected light traverses
again through the lens and the filter, and is finally col-
lected by a confocal detector. Suppose that the numer-
ical aperture of the objective is not too high and con-
sequently, the scalar diffraction theory can be used (the
case of high numerical aperture will be discussed later).
Then, the transverse amplitude PSF at the focal detector
plane can be expressed as[3,14]

U(v) = h(v)h(v), (1)

where v is a radial dimensionless optical coordinate given
by v = k NA r (k = 2π/λ, where λ is the wavelength, NA
is the numerical aperture of the pupil, and r is the radial
distance), h is the amplitude PSF that corresponds to
the lens and the filter, expressed as

h(v) = 2

1
∫

0

P (ρ)J0(vρ)ρdρ, (2)

where ρ is the normalized radial coordinate over the
circular pupil and P is the pupil function. The PSF
can be obtained from I(v) = |U(v)|2. Note that this

Fig. 1. Scanning scheme proposed for increasing storage den-
sity.
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PSF is the square of the PSF corresponding to the same
lens and filter in a conventional (non-confocal) setup[14].
This fact suggests that the proposed PSF will increase
the resolution and decrease the sidelobes at the expense
of energy.

For analyzing the PSF characteristics, we use known
figures of merit such as the Strehl ratio, the sidelobe in-
tensity, and the transverse superresolution gain factor[1].
The Strehl ratio S is defined as the ratio of the inten-
sity at the focal point (the detector in Fig. 1) to that
corresponding to an un-obstructed pupil. The sidelobe
intensity Ir is defined as the maximum intensity of the
first ring in the superresolution intensity pattern relative
to the peak intensity. It is desirable to maintain this
value as low as possible. Usually, values greater than
30% of the peak intensity are not acceptable for data
storage[2,13]. Finally, the transverse gain gives a measure
of the superresolution performance in the transverse di-
rection. It is normalized to make the un-obstructed pupil
equal to unity[1], while it is greater than unity when it
yields superresolution. This gain is based on the second-
order approximation of the PSF and the application of
the Rayleigh criterion to such parabola. It is a com-
monly used parameter for transverse resolution because
it yields useful information and can be calculated from
the pupil moments[1]. Furthermore, this gain is inversely
proportional to the square of the spot radius[1] and, con-
sequently, it is directly proportional to the storage den-
sity. Due to its central role, we will check its validity by
comparing it with the application of the Sparrow crite-
rion for the PSF with no approximation (for the latter
PSF, the Rayleigh criterion does not provide useful in-
formation).

In order to calculate these parameters, we expand the
intensity distribution in series near the geometrical focus.

I(v) =

∣

∣

∣

∣

[

I0 −
1

2
I1 v2 + O(v4)

]

[

I∗0 − 1

2
I∗1v2 + O(v4)

] ∣

∣

∣

∣

2

≈ |I0|4 − Re (I0I
∗

1 ) |I0|2 v2, (3)

where * denotes complex conjugate and In is the nth
moment of the pupil function, defined as

In = 2

∫ 1

0

P (ρ) · ρ2n+1dρ. (4)

In the general case, the maximum of the axial intensity
can be displaced when a filter modifies the pupil. How-
ever, we focus on real filters (amplitude, 0−π phase filters
or a combination of both), where the focus displacement
is zero and can yield a wide range of behaviours[7,11−13].
In such case, the Strehl ratio and the transverse gain
become

S = |I0|4 , (5)

GT = 4
I1

I0
. (6)

Note that the gain is multiplied by the same normal-
ization factor used in the non-confocal case[12], i.e., 4, in

order to compare both cases in identical conditions. As
previously predicted, there is a decrease of the core en-
ergy but at the same time the transverse gain is twice the
gain of the non-confocal case (the width of the parabola
in the confocal case is half width of the parabola in the
non-confocal case). While Eq. (5) is exact, Eq. (6) is
based on the second order approximation of the PSF. In
the case of the other figure of merit, Ir, the PSF must
reach the v12 term, and, thus, it is not useful to search
for an expression in terms of the moments of the pupil
function. It is a common design procedure to obtain the
filter parameters in terms of the Strehl ratio and the res-
olution, and to check whether the corresponding value of
the sidelobe height is acceptable[12]. In a confocal system,
this design procedure is even more justified than in the
non-confocal case.

For the filters here considered, analytic expressions can
easily be derived for Eqs. (5) and (6). For example, for
two-zones filters with intermediate radius ρ1, t amplitude
transmittance in the inner zone and 1 in the outer zone,
the Strehl ratio is S = [1+(t-1)ρ2

1]
4, the transverse gain

is GT = 4 [1+(t-1)ρ4
1]/[1+(t-1)ρ2

1], and even the PSF can
be analytically expressed as

I(v) =

[

2
J1(v)

v
− 2 (1 − t)

ρ1J1(ρ1v)

v

]4

. (7)

Note that the amplitude transmittance varies from 1
to −1, where the positive values correspond to ampli-
tude filters and the negatives ones to hybrid filters. The
special case of phase-only filters is achieved when t = −1.
Let us analyze the system behaviour for the latter filters.
We calculate the PSF for several values of the radius be-
tween zones. As an illustrative example, Fig. 2 shows
the PSF corresponding to radius ρ1 = 0.3. For compar-
ison, the non-confocal case and the pupil free PSF are
also represented. In every case, the second-order approx-
imation, which is used for the gain estimation, is also
shown. From these PSFs, the gain can be represented
as a function of the radius between zones, as shown in
Fig. 3. We can extract several consequences from this
figure. Firstly, the gain for the confocal system is better
than that for the conventional system for every radius
in the superresolution regime (ρ1 < 1/

√
2)[12]. Secondly,

the gain obtained from the second order approximation
of the PSF using the Rayleigh criterion is very similar
to that obtained from the Sparrow criterion on the exact
PSF, which reinforces the use of GT as a valid parameter
for image resolution. Finally, as expected, the gain in-
creases asymptotically as the value 1/

√
2 is approached.

However, the next figure shows that this increase is ac-
companied by an energy loss at the PSF core. Figure 4
represents the Strehl ratio as a function of the attained
transverse gain, and as predicted, the Strehl ratio de-
creases as the gain increases. This curve for two-zones
0−π filters can be easily derived in the superresolution
regime (GT >1) as

S = 1 + 2(1 − GT)

[

(1 − GT) +
√

1 + (1 − GT)2
]

. (8)

The most relevant conclusion is that, once the Strehl
ratio value is fixed, our confocal system yields better
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resolution than non-confocal systems in the superresolu-
tion range GT ∈(1, 4.5), approximately. On the other
hand, the non-confocal system performs better for ex-
treme transverse gain (GT >4.5), but for such filters, the
Strehl ratio is so low and the sidelobes are so high that
it is not feasible for the system being used. Once again,
the results obtained from the Sparrow criterion fit well
with those derived from GT.

Finally, the sidelobe behaviour must be analyzed. Fig-
ure 5 represents the sidelobe ratio as a function of the

Fig. 2. PSF corresponding to a 0−π phase-only filter with ra-
dius ρ1 = 0.3 (solid curve). For comparison, the non-confocal
case (dashed curve) and the pupil free (dotted-dashed curve)
PSF are also represented. In every case, the second-order
approximation, which is used for the gain estimation, is also
shown (dotted curves).

Fig. 3. Theoretical transverse gain as a function of the radius
between zones in the confocal (solid curve), Eq. (6), and non-
confocal (dashed curve) case. Values of this gain calculated
from the PSF are also shown in the confocal (circles) and
non-confocal case (empty circles). Finally, the estimation of
the gain using the Sparrow criterion is shown in the confocal
(triangles) and non-confocal case (empty triangles).

Fig. 4. Strehl ratio as a function of the transverse gain for
the confocal system (solid curve) and the non-confocal sys-
tem (dashed curve).

Fig. 5. Sidelobe ratio as a function of the transverse gain for
the confocal system (solid curve) and the non-confocal system
(dashed curve).

transverse gain for binary 0−π phase-only filters. It can
be seen that the confocal system yields a better value for
the whole range of interest (Ir <0.3). Furthermore, the
figure shows that the sidelobe value limits the attainable
gain to a value of ∼1.8. For each type of filters, this curve
should be built. In any case, all the filters proposed for
the sidelobe ratio improvement[6] could be used in the
confocal system, where their performance would be en-
hanced. An additional improvement for sidelobe ratio
could be obtained by the use of two slightly different fil-
ters instead of only one. This would require a different
design (with a more complicate alignment), but it could
be a solution for cases in which a very high gain is re-
quired.

The whole analysis can be extended to the case of high
numerical aperture, which is relevant as some of new stor-
age systems have high NA[10]. In the transverse direction,
a useful expression for the amplitude PSF can be found
by use of the scalar high-aperture approximation instead
of the vectorial theory[15]. In such case, the PSF in terms
of the pupil moments can be expressed as

I(v) ≈ |Q0|4 −
Re (Q2Q

∗

o
)

4 sin2 α
|Q0|2 v2, (9)

where α is the semiaperture angle, and the moments Qn

are defined as in Ref. [16]. This leads to a gain which
is again twice the gain of the non-confocal case and a
Strehl ratio which is the square of that corresponding to
the non-confocal case. Consequently, most of the conclu-
sions derived in the previous case are still valid for high
aperture systems, and the presented analysis can be used
for investigating their performance.

In conclusion, we present a confocal readout setup that,
by use of a superresolution filter, allows a relevant im-
provement of data density in optical data storage sys-
tems. With the setup, full disk recordings of 2TB could
be possible within a standard form factor of 120×1.2
(mm) thick if current technology is stressed to its limits.
We analyze the resolution, the energy loss, and the side-
lobe behaviour for real filters. And in the case of 0−π
phase filters, we show the superresolution range where
useful results can be attained. Furthermore, analytic ex-
pressions for the Strehl ratio, the transverse gain, and
the PSF are derived. Finally, we demonstrate that the
proposed setup is also valid for high aperture systems.
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Tecnoloǵıa under Grant No. AYA 2007-67287.

References

1. D. M. de Juana, J. E. Oti, V. F. Canales, and M. P.
Cagigal, Opt. Lett. 28, 607 (2003).

2. G. Yang, Opt. Commun. 159, 19 (1999).

3. X. Zhao, C. Li, and H. Ruan, Opt. Eng. 44, 125202
(2005).

4. H. Wang, Z. Chen, and F. Gan, Opt. Eng. 40, 991
(2001).

5. C. Di, C. Zhou, Y. Cao, and E. Dai, in Proceedings
of CLEO/Pacific Rim (2007) DOI:10.1109/CLEOPR.
2007.4391389.

6. P. Gundu, E. Hack, and P. Rastogi, Opt. Express 13,

2835 (2005).

7. V. F. Canales and M. P. Cagigal, Opt. Express 14, 10393
(2006).

8. H. Ding, Q. Li, and W. Zou, Opt. Commun. 229, 117
(2004).

9. H. Luo and C. Zhou, Appl. Opt. 43, 6242 (2004).

10. E. Walker, A. Dvornikov, K. Coblentz, S. Esener, and P.
Rentzepis, Opt. Express 15, 12264 (2007).

11. M. Yun, L. Liu, J. Sun, and D. Liu, J. Opt. Soc. Am. A
22, 272 (2005).

12. V. F. Canales, J. E. Oti, and M. P. Cagigal, Opt. Com-
mun. 247, 11 (2005).

13. M. Mart́ınez-Corral, P. Andrés, C. J. Zapata-Rodŕıguez,
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